ARTIFICIAL LIPOSOME FUNCTIONALIZED WITH CYTOCHROME c_3 AS A MODEL FOR H₂-METABOLIZING BACTERIA

I. Tabushi, and T. Nıshiya Department of Synthetic Chemistry, Kyoto University, Yoshıda, Kyoto 606, Japan

> T. Yagı Shızuoka Unıversity, Shızuoka 422, Japan

> > H. Inokuchi Institute for Molecular Sience, Okazaki 444, Japan

The artificial liposome functionalized with cyt c_3 from Desulfovibrio vulgaris Miyazaki transports electrons across the membrane from the external H₂ to K₃Fe(CN)₆ in its interior in the presence of colloidal Pt. This electron transport simultaneously produces the considerable H⁺ gradient across the membrane large enough for the ATP synthesis.

Although many organisms live by 0_2 respiration, some microorganisms live on $S0_4^{-2}$ or NO_{z} which have the hydrogenase to catalyze the electron transport from molecular H_{2} to these acceptors where the small amount of energy thus obtained is used for the ATP synthesis. These microorganisms catalyze the metabolism of dihydrogen by the use of hydrogenases and cytochrome- c_3 (abbreviated as cyt- c_3). This cyt- c_3 has an unique structure to keep 4 heme units in a single protein (Mw, ca 14,000 for Desulforibrio vulgaris, $M_{1}yazak_{1}^{2}$), where each heme is interacting with others as shown by Mössbauer³ or EPR⁴ spectrum. This intramolecular heme-heme interaction seems to be very important for efficient electron transport by $cyt-c_3$ in H_2 -metabolizing bacterias. We have succeeded to modify an artificial monolayer liposome with $cyt-c_3$ to find out this c_3 -liposome was an extremely efficient electron transport system where self-aggregation of $cyt-c_3$ afforded an efficient electron channel. We now wish to report that combination of c_3 -liposome with colloidal Pt,⁵ as an efficient catalyst to weaken H-H bond, (Pt acts just like a hydrogenase) affords an excellent model for a H_2 -metabolizing bacteria. This model system transported electron from external H_2 to internal K_3 Fe(CN)₆ across the liposomal membrane to produce a large proton gradient across the membrane, just ready for the ATP synthesis. 6

Recently, much attention has been paid for modification of an artificial liposome with an electron transporting protein.⁷⁻¹¹ The present $\text{cyt-}e_3$ membrane, however, showed unique characteristics, of second order dependence of the electron transport rate from outside Na₂S₂O₄ to inside K₃Fe(CN)₆ on the cyt- e_3 concentration as shown in eq(1).

$$-\frac{d[Fe^{3+}]}{dt} = k[cyt-c_3]^2[Fe^{3+}] \qquad eq(1)$$

As a consequence, at higher concentration of $cyt-c_3$ in membrane, electron transport rate became very fast.

reaction artificial membrane	membrane-solution reaction (substrate)	solution-solution reaction across the membrane
cyt c_3	immeasurably fast $(Na_2S_2O_4)$	0.149 s ⁻¹
cyt c	$1.6 \times 10^2 M^{-1} s^{-1} (ascorbate)$	
reduced coenzyme Q-cyt <i>c</i> reductase (complex III)	3.1 μ mol/min/mg (cyt c)	
NADH-coenzyme Q reductase (complex I)	0.35µmol/min/mg (NADH)	

Table I.	Electron Tra	ansport 1	Rate	Across	The	Liposomal	Bimolecular	Membrane	$\mathbf{0r}$	Rate	0f
	Membrane-Sol	lution R	eacti	on.							

a ___; not measured.

Thus, 80 mg of egg-lecithin carefully purified¹² and 20 mg of bovine heart cardiolipin were dissolved in 10 ml of CHCl₃ and the solvent was removed under Ar in vacuo. The resulting lipid film was re-suspended in a 50 ml of 0.5 M solution of $K_3Fe(CN)_6$ (5 mM Tris-HCl pH 7.0) and the mixture was sonicated (5 min x 6) with ice cooling in a box filled with Ar to avoid any air oxidation of lecithin.¹³ Unbound $K_3Fe(CN)_6$, smaller lecithin aggregate and multilayer liposome were removed by the centrifugation and the gelfiltration on the Sepharose 4B column and the artificial monolayer liposome containing $K_3Fe(CN)_6$ in its interior and having negative charges of cardiolipin on the membrane (abbreviated to Fe^{IIII}(1)|Lip⁻ hereafter) was isolated. This artificial liposome showed reasonable stability and $K_3Fe(CN)_6$ was leaking out only in less than 2 % during 72 h at 4°C. To this freshly prepared artificial liposome solution (1.0 ml), 0.22 ml of 60 μ M solution of cyt c_3 which was prepared from Desulfovibrio vulgalis, Miyazaki and carefully purified as described previously² and/or 0.05 ml of 400 μ M solution of C₄ $W^{\pm+}$ (abbreviation of N,N'-di-n-butylviologen) were added dropwise with gentle stirring for 1 min at r. t.

Table II. Pseudo First Order Rate Constants For Internal Fe III Reduction With External H $_2$ Across The Modified Bimolecular Membrane. Fig 1

membrane modification	$k(sec^{-1})$	
without modification 6.5 μ M of cyt c_3 6.5 μ M of cyt c_3 + 10 μ M of $C_4 V^{++}$	$\begin{array}{c} & & & \\ & & & \\ 20 & \times & 10^{-3} \\ 65 & \times & 10^{-3} \\ 1 & 5 & \times & 10^{-3} \end{array}$	colloidal Pt
6.5 μ M of cyt c	~ 0 (< 0.03x 10 ⁻³)	cyt c ₃

a)

and the volume of the solution was adjusted to 2.0 ml with buffer (5 mM Tris-HCl pH 7.0) (see Table II). The artificial liposome, thus obtained, Fe^{III}(1) |Lip⁻.cyt c_3 , or Fe^{III}(i) |Lip⁻(C₄V⁺⁺).cyt c_3 , was separated and purified through a Sephadex G-50 column. The purified artificial liposome was treated with colloidal Pt, which was prepared from 25 mg of K₂PtCl₄ and 50 ml of 1 % aqueous solution of PVA(n=1500) according to the reported procedure.¹⁴ Hydrogenolysis was carried out by the rapid mixing of the solution of colloidal Pt (final concentration was 14 μ eqv/mol in terms of K₂PtCl₄) with the solution of Fe^{III}(1) |Lip⁻(C₄V⁺⁺).cyt c_3 described above to which vigorous H₂ bubbling was applied just before mixing (Fig 1).

All measurements were made at 27°C, pH 7.0 and the change of the absorbance at 435 nm characteristic to $K_3Fe(CN)_6$ was followed by use of a specially designed stopped-flow apparatus.¹⁵ In the case of Fe^{III}(1) |Lip⁻.cyt c_3 (cyt $c_3=6.5 \mu$ M), very rapid reduction of cyt c_3 was observed within 0.6 sec, reaching to the stationary state where $c_3^{II}/c_3^{III} \ge 0.80$. This was followed by the pseudo first order decrease of $K_3Fe(CN)_6$ and the rate gradually slowed down with time. Typical pseudo first order rate constants obtained are listed in Table II, clearly demonstrating that cyt c_3 with or without $C_4^{V^{++}}$ as a cocatalyst is a very efficient electron transport catalyst. While the liposome modified with cyt c, Fe^{III}(1) |Lip⁻.cyt c, instead of cyt c_3 exhibited only very slow reduction of cyt c ($\tau_{1/2}=70$ sec) and the reduction of $K_3Fe(CN)_6$ across the membrane was too slow to measure. These trends were also observed for the Na₂S₂O₄ reduction of artificial liposomes, ¹⁶ where the formation of the effective "electron transport.

Observed rate decrease with time is concluded to be due to potential difference generated across the membrane by the co-transport of H⁺ or counter transport of OH⁻ associated with the electron transport from outside to inside of the liposome based on the following experiments. Thus, the functionalized artificial liposome containing 2-naphthol-3,6-disulfonic acid disodium salt (abbreviated as NDSA hereafter), Fe^{III}(1)·NDSA(1)|Lip⁻ C₄V⁺⁺, was prepared by the same method as described in the text, except that 522 mg of NDSA was added to the solution of K₃Fe(CN)₆ as a pH indicator. In the reduction of Fe^{III}(1)·NDSA(1)|Lip⁻ C₄V⁺⁺ with H₂/colloidal Pt at pH 9.0, spectral change was monitored at 315 nm characteristic to dissociated form of NDSA. The estimated amount of fluxed H⁺ or OH⁻ coupled with the electron transport is shown in Fig 2. Obviously, the amount of transported H⁺ or OH⁻ was approximately equal to that of transported electron in early stages of the reaction (Table III). Then OH⁻ (or H⁺) gradient gradually decreased through a broad maximum.

According to our independent preliminary experiments, OH^- transport should be much more important than H⁺ transport at pH 9.¹⁷ Therefore, the present results clearly indicates that, in the present electron transport system, the "charge neutrality" is preserved mainly by the (active) counter transport of OH^- . The pH gradient thus produced causes the passive transport of OH^- and/or H⁺. At the same time the produced pH gradient decelerates the electron transport rate (more details will be discussed in a full length article). A superposition of these effects certainly leads to the observed complex pH gradient change in the present artificial cell.

It was demonstrated by Jagendorf¹⁸ that an artificial proton gradient (Δ pH \gtrsim 3) set up across a membrane is sufficient for the ATP synthesis and the ATP synthesis was observed from ADP and P1 by the irradiation of the artificial liposome functionalized with ATPase and

bacteriorhodopsin¹⁹ or other related systems.^{20,21} Assuming that approximately the equal amount of electron is transported at pH 7.0, the coupling H^+ or OH^- transport may change the interior pH value from 7.0 to 4.0 (Table III). Therefore, a conclusion is presently drawn that an artificial liposome appropriately modified by cyt c_3 can "digest" hydrogen to produce the pH gradient sufficient enough for the ATP synthesis.

REFERENCES AND NOTES

- 1. M. Stephenson and L. H. Stickland, Biochem. J., 25,205 (1931).
- 2. T. Yagi and K. Maruyama, Biochim. Biophys. Acta., 243, 214 (1971).
- K. Ono, K. Kimura, T. Yagi and H. Inockuchi, J. Chem. Phys., 63, 640 (1975).
 J. LeGall, M. Bruschi-Heriaud and D. V. DerVartanian, Biochim. Biophys. Acta., 234, 499 (1971).
- B. Jirgenson and M. E. Straumanis, "A Short Textbook of COLLOID CHEMISTRY" 2nd ed, 5. Pergamon Press Ltd, England (1962).

- 10.
- Pergamon Press Ltd, England (1962).
 P. Mitchell, <u>Biol. Rev.</u>, 41, 445 (1966).
 C. I. Ragan and P. C. Hinkle, J. Biol. Chem., 250, 8472 (1975).
 K. H. Leung and P. C. Hinkle, <u>ibid.</u>, 250, 8467 (1975).
 P. C. Hinkle, <u>Fed. Proc.</u>, 32, 1988 (1973).
 J. B. Cannon and J. E. Erman, <u>Biochem. Biophys. Res. Commun.</u>, 84, 254 (1978).
 M. R. Sullivan and P. W. Holloway, <u>Biochem. Biophys. Res. Commun.</u>, 54, 808 (1973).
 W. S. Singleton, M. S. Gray, M. L. Srown and J. L. White, <u>J. Am. Oil. Chem. Soc.</u>, 42, 57 (1965). 11. 12.
- 42, 53 (1965).
- R. A. Klein, Biochim. Biophys. Acta., 210, 486 (1970). 13.
- L. D. Rampino and F. F. Nord, J. Am. Chem. Soc., 63, 2745 (1941). 14.
- A. Specially designed syringe was used which has small holes and a closed tip. 15.
- I. Tabushi, T. Nishiya, T. Yagi and H. Inokuchi, J. Amer. Chem. Soc., 103, in press 16. (1981).
- 17. I. Tabushi and T. Nishiya, unpublished results.
- A. T. Jagendorf and E. Uribe, Proc. Natl. Acad. Sci. U. S. A., 55, 170 (1966). 18.
- M. Yoshida, N. Sone, H. Hirata and Y. Kagawa, Biochem. Biophys. Res. Commun., 67, 19. 1295 (1975).
- N. Sone, M. Yashida, H. Hirata and Y. Kagawa, J. Biol. Chem., 252, 2956 (1977). 20.
- C. I. Ragan and E. Racker, 1bid., 248, 2563 (1973). 21.

(Received in Japan 7 September 1981)